Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6620, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503796

RESUMO

As ocean temperatures continue to rise, coral bleaching events around the globe are becoming stronger and more frequent. High-resolution temperature data is therefore critical for monitoring reef conditions to identify indicators of heat stress. Satellite and in situ measurements have historically been relied upon to study the thermal tolerances of coral reefs, but these data are quite limited in their spatial and temporal coverage. Ocean circulation models could provide an alternative or complement to these limited data, but a thorough evaluation against in situ measurements has yet to be conducted in any Pacific Islands region. Here we compared subsurface temperature measurements around the nearshore Main Hawaiian Islands (MHI) from 2010 to 2017 with temperature predictions from an operational Regional Ocean Modeling System (ROMS) to evaluate the potential utility of this model as a tool for coral reef management. We found that overall, the ROMS reanalysis presents accurate subsurface temperature predictions across the nearshore MHI region and captures a significant amount of observed temperature variability. The model recreates several temperature metrics used to identify coral heat stress, including predicting the 2014 and 2015 bleaching events around Hawai'i during the summer and fall months of those years. The MHI ROMS simulation proves to be a useful tool for coral reef management in the absence of, or to supplement, subsurface and satellite measurements across Hawai'i and likely for other Pacific Island regions.


Assuntos
Antozoários , Animais , Temperatura , Havaí , Ilhas , Recifes de Corais , Resposta ao Choque Térmico , Oceanos e Mares
2.
Sci Rep ; 10(1): 18602, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110129

RESUMO

Coral reefs are highly sensitive to ocean acidification due to rising atmospheric CO2 concentrations. We present 10 years of data (2009-2019) on the long-term trends and sources of variation in the carbon chemistry from two fixed stations in the Australian Great Barrier Reef. Data from the subtropical mid-shelf GBRWIS comprised 3-h instrument records, and those from the tropical coastal NRSYON were monthly seawater samples. Both stations recorded significant variation in seawater CO2 fugacity (fCO2), attributable to seasonal, daytime, temperature and salinity fluctuations. Superimposed over this variation, fCO2 progressively increased by > 2.0 ± 0.3 µatm year-1 at both stations. Seawater temperature and salinity also increased throughout the decade, whereas seawater pH and the saturation state of aragonite declined. The decadal upward fCO2 trend remained significant in temperature- and salinity-normalised data. Indeed, annual fCO2 minima are now higher than estimated fCO2 maxima in the early 1960s, with mean fCO2 now ~ 28% higher than 60 years ago. Our data indicate that carbonate dissolution from the seafloor is currently unable to buffer the Great Barrier Reef against ocean acidification. This is of great concern for the thousands of coral reefs and other diverse marine ecosystems located in this vast continental shelf system.

3.
Glob Chang Biol ; 26(4): 2149-2160, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32048410

RESUMO

Seawater acidification from increasing CO2 is often enhanced in coastal waters due to elevated nutrients and sedimentation. Our understanding of the effects of ocean and coastal acidification on present-day ecosystems is limited. Here we use data from three independent large-scale reef monitoring programs to assess coral reef responses associated with changes in mean aragonite saturation state (Ωar ) in the Great Barrier Reef World Heritage Area (GBR). Spatial declines in mean Ωar are associated with monotonic declines in crustose coralline algae (up to 3.1-fold) and coral juvenile densities (1.3-fold), while non-calcifying macroalgae greatly increase (up to 3.2-fold), additionally to their natural changes across and along the GBR. These three key groups of organisms are important proxies for coral reef health. Our data suggest a tipping point at Ωar 3.5-3.6 for these coral reef health indicators. Suspended sediments acted as an additive stressor. The latter suggests that effective water quality management to reduce suspended sediments might locally and temporarily reduce the pressure from ocean acidification on these organisms.

4.
PLoS One ; 12(5): e0175663, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467414

RESUMO

CO2 seeps in coral reefs were used as natural laboratories to study the impacts of ocean acidification on the pontellid copepod, Labidocera spp. Pontellid abundances were reduced by ∼70% under high-CO2 conditions. Biological parameters and substratum preferences of the copepods were explored to determine the underlying causes of such reduced abundances. Stage- and sex-specific copepod lengths, feeding ability, and egg development were unaffected by ocean acidification, thus changes in these physiological parameters were not the driving factor for reduced abundances under high-CO2 exposure. Labidocera spp. are demersal copepods, hence they live amongst reef substrata during the day and emerge into the water column at night. Deployments of emergence traps showed that their preferred reef substrata at control sites were coral rubble, macro algae, and turf algae. However, under high-CO2 conditions they no longer had an association with any specific substrata. Results from this study indicate that even though the biology of a copepod might be unaffected by high-CO2, Labidocera spp. are highly vulnerable to ocean acidification.


Assuntos
Dióxido de Carbono/química , Copépodes/fisiologia , Concentração de Íons de Hidrogênio , Ácidos , Animais , Feminino , Masculino , Oceanos e Mares
5.
Sci Rep ; 6: 27019, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27255977

RESUMO

Ocean acidification imposes many physiological, energetic, structural and ecological challenges to stony corals. While some corals may increase autotrophy under ocean acidification, another potential mechanism to alleviate some of the adverse effects on their physiology is to increase heterotrophy. We compared the feeding rates of Galaxea fascicularis colonies that have lived their entire lives under ocean acidification conditions at natural carbon dioxide (CO2) seeps with colonies living under present-day CO2 conditions. When provided with the same quantity and composition of zooplankton as food, corals acclimatized to high CO2 showed 2.8 to 4.8 times depressed rates of zooplankton feeding. Results were consistent over four experiments, from two expeditions and both in field and chamber measurements. Unless replenished by other sources, reduced zooplankton uptake in G. fascicularis acclimatized to ocean acidification is likely to entail a shortage of vital nutrients, potentially jeopardizing their health and survival in future oceans.


Assuntos
Antozoários/fisiologia , Dióxido de Carbono/metabolismo , Aclimatação , Animais , Calcificação Fisiológica , Dióxido de Carbono/química , Recifes de Corais , Comportamento Alimentar , Processos Heterotróficos , Concentração de Íons de Hidrogênio , Água do Mar/química , Zooplâncton
6.
J Acoust Soc Am ; 128(5): 2664-80, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21110563

RESUMO

Acoustic assessment of Bering Sea euphausiids and their predators can provide useful data for ecosystem studies if the acoustic scattering characteristics of these animals are known. The amount of acoustic energy that is scattered by different marine zooplankton taxa is strongly affected by the contrast of the animal's density (g) and sound speed (h) with the surrounding seawater. Density and sound speed contrast were measured in the Bering Sea during the summer of 2008 for several different zooplankton and nekton taxa including: euphausiids (Thysanoessa inermis, Thysanoessa raschii, and Thysanoessa spinifera), copepods, amphipods, chaetognaths, gastropods, fish larvae, jellyfish, and squid. Density contrast values varied between different taxa as well as between individual animals within the same species. Sound speed contrast was measured for monospecific groups of animals and differences were found among taxa. The range, mean, and standard deviation of g and h for all euphausiid species were: g = 1.001-1.041; 1.018 ± 0.009 and h = 0.990-1.017; 1.006 ± 0.008. Changes in the relationship between euphausiid material properties and animal length, seawater temperature, seawater density, and geographic location were also evaluated. Results suggest that environmental conditions at different sample locations led to significant differences in animal density and material properties.


Assuntos
Acústica , Ecossistema , Euphausiacea/crescimento & desenvolvimento , Modelos Teóricos , Zooplâncton/crescimento & desenvolvimento , Animais , Euphausiacea/anatomia & histologia , Pesqueiros , Oceanos e Mares , Água do Mar , Tensão Superficial , Temperatura
7.
J Acoust Soc Am ; 122(1): 574-80, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17614513

RESUMO

The density and sound speed of two coastal, gelatinous zooplankton, Mnemiopsis leidyi (a ctenophore) and Cyanea capillata (lion's mane jellyfish), were measured. These parameters are important inputs to acoustic scattering models. Two different methods were used to measure the density of individual animals: one used a balance and graduated cylinder to determine the mass and displacement volume of the animal, the other varied the density of the solution the animal was immersed in. When the same animal was measured using both methods, density values were within 1% of each other. A travel-time difference method was used to measure the sound speed within the animals. The densities of both zooplankton slightly decreased as the animals increased in length, mass, and volume. The ratio of animal density and sound speed to the surrounding seawater (g and h, respectively) are reported for both animals. For Mnemiopsis leidyi ranging in length from 1 to 5 cm, the mean value (+/-standard deviation) of g and h were 1.009 (+/-0.004) and 1.007 (+/-0.001). For Cyanea capillata ranging in bell diameter from 2 to 11 cm, the mean value (+/-standard deviation) of g and single value of h were 1.009 (+/-0.004) and 1.0004.


Assuntos
Ctenóforos/fisiologia , Cifozoários/fisiologia , Som , Animais , Biomassa , Modelos Teóricos , Movimento (Física) , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...